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According to both Dirac’s and Kemmer’s relativistic quantum theories, the eigenvalues
of the velocity operator are+c and−c. This false result is avoided if certain alternative
particle coordinates are adopted. Another advantage is that the new coordinates occur
in additional constants of the motion. These are sui generis angular momenta obtained
by taking the vector product of the nonstandard coordinates with the linear momentum.
An additional virtue of the new velocity operator is that, like in classical mechanics,
it is proportional to the linear momentum. Besides, the zeroth component of the new
set of coordinates does not commute with the hamiltonian, which results in a genuine
“indeterminacy” relation between time and energy.
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1. INTRODUCTION

The standard velocity operator in Dirac’s theory of electrons isdx/dt= −cα.
This operator is inadequate for two reasons: First, because its eigenvalues are+c
and−c, wherec is the speed of light in a vacuum; and second, because it is not
proportional to the linear momentum. Similar results hold in Kemmer’s theory for
particles with spin 0 or 1. We submit that these results follow from the assumption
that the spatial coordinatex is made to double as the particle position coordinate.

An alternative in the case of Dirac’s theory is to adoptXµ = xµ + (3/2) iγ µ

as the position operator, where3 = (h/2πm0c) is the Compton wavelength. The
vector product of this operator with the linear momentum yields an interesting, if
neglected, set of constants of the motion. Our hypothesis entails that the electron
velocity is proportional to the momentum, just as in classical particle mechanics.
O’Connell and Wigner (1977) too retrieved the classical relation between veloc-
ity and momentum, though using the somewhat unwieldly coordinate position
introduced earlier by Newton and Wigner (1949).
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The counterparts in Kemmer’s theory can likewise be repaired by redefining
the position coordinate and the associated velocity operator in a similar fashion.
It turns out that in this case, too, a semiclassical relation between velocity and
momentum results.

Besides, the zeroth components of the new position coordinates lead to gen-
uine zeroth Heisenberg inequalities involving the mean standard deviations of the
energy and the said time coordinates.

2. INADEQUACY OF THE STANDARD VELOCITY
OPERATOR FOR THE ELECTRON

As is well-known, in Dirac’s theory of the electron the relativistic velocity
operator isdx/dt= −cα, where the hypercomplex “number”α is the coefficient of
the momentum in Dirac’s hamiltonianHD = cαp+m0c2β. The threeα’s andβ are
representable by 4× 4 matrices. The eigenvalues of each of the three components
of −cα are+c and−c. Besides, these components do not commute with one
another. Consequently, they have no precise values at the same time—whence
dx/dt cannot be said to be a vector, let alone a measurable one.

This result violates the relativistic ban on luminal velocities for entities en-
dowed with mass. It is also at variance with the principle (or dogma) that the
eigenvalues of a dynamical variable are the possible outcomes of measurements of
it. These difficulties are sometimes justified by saying that any measured value of
the velocity is the average of a variable that oscillates between+cand−c. However,
this is a lame excuse. Why not admit that the formula in question is not just “very
remarkable,” as Bethe (1964, p. 205) commented, but physically meaningless?

If “ dx/dt= −cα” is indeed meaningless, then we must identify the false
premise(s) that entail(s) it. The obvious suspect is the tacit assumption thatx
is both the label identifying a point in space and the particle coordinate. Surely
this assumption is false, for the values ofx depend only on the coordinate system,
whereas those of a genuine particle coordinate depend also upon the particle’s state.
In other words,x is not a dynamical variable on a par with the linear momentum and
the spin: it is a geometric coordinate, not a physical one. Decorating it with a cap
will not do, because in the Schr¨odinger representation, contrary to the Heisenberg
one, position is not a hermitian operator but an ordinary real variable.

One way of saving the formula under discussion might be to suppose that
it represents the spatial disturbance caused by the presence of the electron. This
disturbance could be regarded as the superposition of two shock waves, or spatial
ripples, one with speed+c, and the other with speed−c, in thex-direction. This
assumption is consistent with the hypothesis that the line element in the putative
space attached to the electron isds= γµdxµ, whereγµ = βαµ, andα0 = I . Indeed,
ds2 = dxµdxµ. Thus, unlike the underlying pseudo-Euclidean space, which is rigid,
the electron space would be fluctuating or jelly-like.
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In other words, theZitterbewegung(trembling motion), first described by
Schrödinger in 1930, would be a property of the space surrounding the electron,
rather than a kinematical feature of the electron itself. But this speculation, however
intriguing, will remain a fantasy as long as the geometry of the putative electron
space and its possible experimentally testable features are not further investigated.
And neither task could reasonably be accomplished independently of quantum
electrodynamics, if only because this theory involves the fluctuating electrody-
namic vacuum. Let us therefore return to our initial question: Which is the correct
velocity operator?

Several answers to this question have been proposed. One of them is that of
Foldy and Wouthuysen (1950). These authors altered the standard representation
of the Dirac matrices, and subjectedx to a unitary transformation. They thus ob-
tained a plausible result with a meaningful classical limit (Costello and McKellar,
1995). However, unlike ours, their position coordinate is not Lorentz-covariant.
Besides, far from having an obvious physical meaning, the Foldy–Wouthuysen
transformation looks like an ad hoc afterthought. We prefer to question the tacit
assumption thatx is both a geometric and a physical coordinate. We will adopt
a nonstandard particle coordinate that is physically meaningful because it is an-
chored to a constant of the motion. And we will do something similar for Kemmer’s
theory.

3. ALTERNATIVE POSITION AND VELOCITY OPERATORS
FOR SPIN 1/2 PARTICLES

The question of the correct velocity operator presupposes the answer to an-
other question, namely: Which is the adequate particle coordinate? In the following
we propose to explore the following tentative answer: The correct position coor-
dinate for a fermion, such as an electron, is the operator

Xµ = xµ + (3/2) iγ µ, where γ µγ ν + γ νγ µ

= −2δµν and 3 = h/(2πm0c). (1a)

The eigenvalues of this operator are

eivXµ = xµ ± (3/2).

Recalling thatdxµ/ds= γ µ, wheres designates the proper time, (1a) can be
rewritten as

Xµ = xµ + (3/2)i (dxµ/ds). (1b)

This shows thatXµ is manifestly Lorentz covariant. Obviously, the difference
between the two coordinates disappears in the nonquantum limith = 0.
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Interestingly,Xµ is not an ad hoc contrivance but a physically meaningful
operator, because it occurs in the nonstandard angular momentum

Mµ
ν = Xµ5ν − Xυ5µ, where 5µ = pµ − (e/c)Aµ, (2)

Aµ is the vector potential that generates the electromagnetic field intensities. Each
of the six components of this tensor is a constant of the motion of an electron in
a central field and, a fortiori, of a free electron (Bunge, 1955; Bunge and K´alnay,
1969). We submit that, since conservation equations are physical laws par excel-
lence,Xµ is a bona fide dynamical variable.

A quick calculation yields the velocity associated with the spatial component
X of Xµ:

V = d X/dt = −(1/m0)βp. (3)

The annoying term−cα originating in x has been compensated for by a term
+cα originating inγ . The new velocity operator is thus proportional to the linear
momentum—as it should be in accordance with the Einstein–Bohr correspondence
principle about rival theories. The two vectors in question are parallel in the case
of the electron (represented by the two−1 entries ofβ), and antiparallel in that
of the positron (represented by the+1 entries ofβ). And since the components of
dX/dt commute with one another, it is a vector, unlikedx/dt.

The nonquantum analog of (3) is the relativistic formula

v = (1− v2/c2)1/2(p/m0).

However, the classical analogy stops right here. Indeed, the particle is accelerated
even when free. In fact,

d2Xdt2 = −(4πc/hm0)(i γ p)p. (4)

Thus, X too suffers fromZitterbewegung, though less severely so thanx, since
dX/dt is diagonal and therefore does not fluctuate. Moreover,d2X/dt2 shares with
dx/dt andd2x/dt2 the undesirable property that its components fail to commute
with one another. Hence, unlikedX/dt, the acceleration is not a vector.

There are further disanalogies with both relativistic mechanics and nonrela-
tivistic quantum mechanics. To begin with, the components ofX do not commute
among themselves. For example,

[X1, X2] = −i (32/2)σ3. (5)

According to the standard (or Copenhagen) interpretation, this equation, like any
of its two partners, means that a precise measurement of any of the position com-
ponents precludes an exact measurement of the other two. And according to the
realist interpretation, (5) means that the three components ofX do not exist at
the same time: The electron is not precisely localized. Consequently its position
cannot be measured exactly, and this regardless of the Heisenberg inequality. On
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either interpretation,X does not qualify as a vector. This result shows that Dirac’s
theory does not include a kinematics. More on this below.

Secondly,X andV do not commute with one another either. Indeed,

[Xi , Vj ] = −i (3c)δi j + i (3/m0)αi pj , i , j = 1, 2, 3. (6)

Recall now that, ifA andB are dynamical variables with a commutator [A, B] =
iC , then their mean standard deviations1A and1B are related by1A ·1B ≥
2−1|〈C〉|where〈C〉 is the expectation value ofC for the given state. The Eq. (6) for
i = j leads to the following relativistic generalization of Heisenberg’s inequalities
for spin one-half particles:

1Xi ·1Vi ≥ (h/4πm0)+ (3/2m0)| < αi pi > |, i = 1, 2, 3, (7a)

where| < αi pi > | is the absolute value of the contribution of thei th component
to the total average kinetic energy.

The first term of the RHS of (7a) is similar to the nonrelativistic result. By
contrast, the second term in the RHS of (7a) is an energy-dependent correction, as
might have been expected.

The Eq. (6) fori 6= j leads to

1Xi ·1Vj ≥ (3/2m0)| < αi pj > |, i , j = 1, 2, 3, i 6= j . (7b)

These inequalities lack nonrelativistic limits. They suggest that, on the relativistic
theory, the corpuscular aspect is even more blurred than on the nonrelativistic
theory.

4. THE CASE OF KEMMER’S THEORY FOR SPINS 0 AND 1

Kemmer’s theory was initially proposed to describe spin 0 and 1 particles.
Though rarely used nowadays, it is still interesting if only because its mathematical
formalism is richer than Dirac’s. The basic Kemmer equation is typographically
almost identical with Dirac’s:[

βµ∂xµ + (1/3)
]
9 = 0, with µ = 1, 2, 3, 4. (5)

But the coefficients of the four-momentum are now implicitly defined by

βλβµβν + βνβµβλ = δµνβλ + δλµβν. (6)

These hypercomplex “numbers” can be represented by 16× 16 singular matrices,
whose eigenvalues are 0, 1, and−1.

To calculate time derivatives, we need the Kemmer hamiltonian. This can be
written as

HK = cαp+m0c2β0, (7)
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where

αK = i (β4βK − βKβ4), β4 = iβ0. (8)

We now assume that the particle position is represented by

Xµ = xµ −3βµ. (9)

The eigenvalues of this operator are 0,+3, and−3. Interestingly, the vector
product of this position coordinate and the linear momentum yields a new angular
momentum that happens to be a constant of the motion for a free particle (Bunge,
1958):

Mµ
ν = Xµpν − Xν pν , d Mµ

ν /dt = 0. (10)

The time derivative of the spatial coordinate has again an undesirable value, namely

dx/dt = −cαk, (11)

where the Kemmer alphas are given by (8). Again, this cannot be the suitable
velocity operator for a boson endowed with mass, since its eigenvalues are 0,+c,
and−c, regardless of the particle state. On the other hand, the time derivative of
the spatial part of (9) is similar to the Dirac case, namely

d X/dt = −(1/m0)β0 p, (12)

whose eigenvalues are 0,p/m0, and−p/m0. Besides, the components ofdX/dt
commute with one another, so that this is a genuine vector, just as for fermions.
These are certainly desirable features ofX.

By contrast, the acceleration of a free Kemmer particle is

d2X/dt2 = (2πc/hm0)(βp)p, (13)

which is a fluctuating variable.

5. TIME AND ENERGY

With the help of the clock-in-a-box thought experiment that Bohr (1949)
employed in his famous discussion with Einstein, he claimed that time and energy
are canonically conjugate variables, and thus mutually complementary by analogy
to position and linear momentum. However, his formula “1t ·1E ≥ h/4π ” is
bogus, because the time variable occurring in it is what Dirac called ac number;
that is, its scatter is nil (Bunge, 1970).

Let see what happens with the zeroth components of our alternative coordi-
nates, namely

X0 = x0+ (3/2) iγ 0 in Dirac’s theory, (13)

and

X0 = x0−3β0 in Kemmer’s theory. (14)
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Herex0 = ct is the “public” time, a “c-number,” whereas the second term repre-
sents the internal one that “ticks” only via the state function. It turns out that

[X0, HD] = i3c(γ p) in Dirac’s theory, (15a)

and

[X0, HK] = i 23c(βp) in Kemmer’s theory. (15b)

Consequently, the corresponding zeroth Heisenberg inequalities are

1X0 ·1E ≥ (3c/2)| < γ p > | in Dirac’s theory, (16a)

and

1X0 ·1E ≥ 3c| < βp > | in Kemmer’s theory. (16b)

These inequalities have no counterparts in nonrelativistic quantum mechanics.
However, in the simplest case, when the “small” components of the corresponding
spinors are negligible, the indicated averages values vanish, and we are left with

1X0 ·1E ≥ 0. (17)

That is, the lower bound of the product of the “indeterminacies” or “uncertainties”
(average scatters) is zero. In other words, in this case time and energy may not be
mutually “complementary.” However, the product in question is greater than zero
if the small components of the state spinor are significant, that is, for high energies.

6. CONCLUDING REMARKS

Quantum mechanics is counterintuitive enough: There is no need to add it bla-
tantly meaningless formulas. One of these, “dx/dt= −cα,” occurs in both Dirac’s
and Kemmer’s theories—though with somewhat different meanings. This is a con-
sequence of the doubtful assumption thatx, in addition to labeling an arbitrary
point in space, represents the position coordinate of the particle in question.

We have introduced alternative operators that involve the physical constant3

and that do not have that undesirable feature. Besides, they occur in two new
sets of constants of the motion, so that they are not ad hoc tricks devised to
remove implausible results. In particular, the corresponding velocity turns out to
be proportional to the momentum. Moreover, in both theories the components of
the velocity commute with one another, so that they are genuine vectors.

However, theZitterbewegung, which gets ironed out in the velocity, reappears
in the acceleration. This shows that relativistic quantum mechanics, whether for
fermions or for bosons, does not contain a kinematics, any more than its nonrela-
tivistic counterpart does. On the other hand, genuine zeroth Heisenberg inequalities
hold for the energy and time operators for particles of both kinds.
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In sum, we have introduced nonstandard particle coordinates and their rates
of change for both the Dirac and the Kemmer particles, that are less flawed than the
standard formula “dx/dt= −cα.” Furthermore, those cooordinates are involved
in interesting constants of the motion, and their zeroth components are involved in
genuine “indeterminacy” inequalities. Still, our coordinates have a defect of their
own: The accelerations are not nil even in the absence of external forces. That is,
both theories violate the principle of inertia.

An upshot of the preceding is that the theories in question do not help compute
trajectories. Hence we have not yet hit on the correct velocity operator. But it is also
possible that the question of the correct velocity operator is pointless, because the
concepts of velocity and acceleration might be just as alien to the quantum theory as
that of trajectory. After all, the concepts of particle and wave “have only the validity
of analogies which are accurate only in limiting cases” (Heisenberg, 1930, p. 10).
The practical business of quantum “mechanics” is to calculate energy spectra,
scattering cross-sections, and the like, not orbits. Hence, some misunderstandings
of it might be avoided by renaming it “quantics” (L´evy-Leblond and Balibar, 1984)
and by calling its referents “quantons” (Bunge, 1967).
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